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Prof. Dr. Ayşe Gül Gözen
Head of Department, Biology

Prof. Dr. Mehmet Somel
Supervisor, Biological Sciences, METU

Dr. Nick Goldman
Co-supervisor, European Bioinformatics Institute, EMBL

Examining Committee Members:

Assist. Prof. Dr. Aybar Can Acar
Health Informatics, METU

Prof. Dr. Mehmet Somel
Biological Sciences, METU

Assoc. Prof. Dr. Emre Keskin
Aquacultural Engineering, Ankara University

Date:



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: FATMA RABİA FİDAN
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ABSTRACT

REALISTICALLY SIMULATING SARS-COV-2 WASTEWATER
METAGENOME SEQUENCING DATA

FİDAN, FATMA RABİA
M.S., Department of Biology

Supervisor: Prof. Dr. Mehmet Somel

Co-Supervisor: Dr. Nick Goldman

September 2022, 46 pages

Wastewater surveillance for SARS-CoV-2 is seeing increasingly widespread use as it

proved useful in tracking variants and their prevalence in an unbiased manner. It has

been shown that it is possible to detect an emerging variant from wastewater sam-

ples up to two weeks earlier than its detection at hospital clinics (Karthikeyan et al.,

2021). Such data are critical for policies regarding the measures taken against vari-

ants of concern. Since such surveillance has important consequences, it is also vital to

test and validate the surveillance methodologies and software packages, which in turn

creates a need for a realistic SARS-CoV-2 wastewater metagenome sequencing data

simulator. We stepped up to develop a prototype simulator, modelling many unusual

features of the data, such as differential SARS-CoV-2 variant abundance, amplicon

architecture, differential amplicon abundance of a primer set and major error com-

ponents. By investigating wastewater metagenomic SARS-CoV-2 datasets, we iden-

tified high-frequency errors where many reads from the same sample wrongly sup-

ported the same artifactual mutation. This kind of error likely stemmed from RNA-

degradation and PCR amplification processes, as the most significant source of noise
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in wastewater metagenomic SARS-CoV-2 data analysis. This makes it crucial to real-

istically model high-frequency errors within inference and simulation frameworks for

this type of data. To achieve this, we study the error characteristics of SARS-CoV-2

wastewater sequencing data, model the major high-frequency error components, and

realistically implement these models into our simulator. We also aim to display some

use cases of the simulated data in downstream applications such as the benchmark-

ing of software for individual variant resolution. Moreover, comparisons involving

results from wastewater and clinical data will allow us to see the differences in error

characteristics of the clinical and wastewater data.

Keywords: SARS-CoV-2, pandemic, public healthcare, wastewater, amplicon se-

quencing, simulation
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ÖZ

SARS-COV-2 ATIK SU METAGENOM VERİSİNİN GERÇEKÇİ
SİMÜLASYONU

FİDAN, FATMA RABİA
Yüksek Lisans, Biyoloji Bölümü

Tez Yöneticisi: Prof. Dr. Mehmet Somel

Ortak Tez Yöneticisi: Dr. Nick Goldman

Eylül 2022 , 46 sayfa

Yapılan çalışmalarla yeni bir SARS-CoV-2 varyantının atık sularda hastane klinik-

lerinden 2 hafta kadar daha erken gözlemlenebildiğinin gösterilmesiyle (Karthike-

yan et al., 2021) varyant takibi için atık su izlemesi tarafsız ve işe yarar bir metod

olarak yaygınlaşmaya başladı. Bu şekilde bir varyant takibinin tehlikeli varyantlara

karşı alınan önlem politikalarında oynayacağı rol ve bunların yol açabileceği büyük

düzenlemeler yüzünden bu çalışmalarda kullanılan metodların ve yazılımların test

edilmesi ve doğrulanması büyük önem taşımaktadır. Bu durum, gerçekçi bir atık su

SARS-CoV-2 metagenom simulatörü ihtiyacını doğurmaktadır. Biz de gerçek atık

sudan gelen verinin farklı SARS-CoV-2 varyant yoğunluğu, pirmer setine özel farklı

amplikon yoğunlukları ve temel hata bileşenleri gibi en önemli özelliklerini yansıtan

prototip bir simülatör yapmak için adım attık. Gerçek veriye baktığımızda bazı yapay

mutasyonların verisetinde bir çok okuma tarafından desteklendiğini gördük. Bu tip

hataların başlıca sebepleri arasında RNA’nın örneklemesine kadar geçen sürede su

içinde beklemesinden kaynaklı RNA bozulmaları ve PCR hataları yer almaktadır. Bu
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durum bu tarz yüksek sıklıklı hataların da simülasyonun bir parçası olmasını gerekli

kılmaktadır. Biz de bu çalışmada bunu başarmak için gerçek verinin yüksek sıklıklı

hata karakteristiklerini çalışıp başlıca yüksek sıklıklı hata bileşenlerini gerçekçi bir

şekilde simülatörümüze uyguluyoruz. Ayrıca simülatör çıktısı verinin olası kullanım

alanlarını göstermenin yanı sıra bireysel korona varyantlarını tespit etme gibi uygu-

lama programlarında nasıl davrandığını gösteriyoruz. Atık su verisi ile kilinik veriyi

karşılaştırarak iki verinin hata karakteristiklerinin farklı olduğunu gösteriyoruz.

Anahtar Kelimeler: SARS-CoV-2, pandemi, toplum sağlığı, atık su, amplikon sekans-

lama, simülayon
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was my first research project partner, Dilek Koptekin, who was my first supervisor in
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CHAPTER 1

INTRODUCTION

1.1 Summary

Wastewater surveillance has been an important tool for dealing with the SARS-CoV-2

pandemic. With the acceleration of wastewater sequencing studies in the pandemic,

researchers create new softwares designed to be used with wastewater sequencing

data. Benchmarking these softwares requires a simulator which can create realistic

data accounting for the specialised set of characteristics we observe in wastewater

sequencing data, among which a high rate of RNA degradation and PCR errors are

prominent as a result of their environmental exposure in the sewage. In this study, we

analysed the error characteristics of wastewater sequencing data and implemented our

findings in our simulator tool SWAMPy. As a comparison, we also analysed clinical

sequencing data which validated that a high error rate is a characteristic feature of

wastewater sequencing data. We ran SWAMPy-simulated data through a downstream

application software to show that it captures information as expected. SWAMPy thus

accounts for the important characteristics of the data that were not covered by the

existing simulators. It, therefore, provides a tool for creating control case data for

researchers who work on SARS-CoV-2 wastewater studies and consequently con-

tributes towards dealing with the SARS-CoV-2 pandemic.

1.2 Wastewater-Based Epidemiology Before the SARS-CoV-2 Pandemic

Before the SARS-CoV-2 pandemic, wastewater-based epidemiology had been used

for tracking chemicals and pathogens by analysing samples taken from the sewage
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systems. Tracking caffeine, alcohol and tobacco consumption and use of medications

and illicit drugs have been the target of wastewater-based epidemiology studies [1], as

have the tracking of viruses like hepatitis [2, 3] and poliovirus [4, 5, 6], and worldwide

antimicrobial resistance [7]. Even prior to the SARS-CoV-2 pandemic, the presence

of coronaviruses in faeces and their survival in the water had been shown [8].

For substance surveillance, wastewater is a valuable and practical source of informa-

tion in terms of ethics because it does not require consent to collect the data [7] and

it bypasses the biases coming from data collected via questionnaires about topics like

drug use [1]. When it comes to public health concerns and tracking pathogens, it has

been reported that wastewater surveillance is sometimes advantageous over clinical

surveillance because the wastewater data coming from a population provides a wider

picture of pathogens circulating in the population and is less biased and faster com-

pared to clinical surveillance where only symptomatic people register to clinics for

treatment and only after they start to show symptoms. This causes a delay in track-

ing symptomatic patients and misses asymptomatic people who may be important

contributors to the pathogen circulation. [7].

There are different approaches for studying pathogens from sewer systems depending

on the question and the organism(s) of interest. First of all, microbiological methods

which require culturing the organism are used for routine controls of the wastewater

treatment facilities where the composition of the bacterial community directly affects

the treatment products [9, 10]. For detecting and quantifying a specific pathogen,

DNA/RNA isolation followed by targeting a specific region with qPCR is a common

approach [3, 6]. For discovering novel microorganisms and other metagenomic pur-

poses, whole metagenome sequencing is used [9]. Also, when there is a database

of known organisms, 16s rDNA sequencing can be used for characterising microbial

communities [9, 11, 12].

On the other hand, some wetlab methods that enable easy sequencing of low abun-

dance viruses directly from biological samples without first culturing, namely whole

genome amplicon sequencing, have been become available. This method is ideal es-

pecially for viruses that are not suitable for metagenomics methods [13] and will be

mentioned in detail in the following sections.

2



1.3 SARS-CoV-2 Surveillance in the Pandemic

After the first case of SARS-CoV-2 was reported in December 2019 and the disease

started to spread, first studies about SARS-CoV-2 were published in a short time

[14, 15]. These were the first sequencing studies of SARS-CoV-2 to our knowledge

mainly to identify the culprit as a Betacoronavirus similar to previously identified

ones in bats with high sequence similarity. In these studies, the authors performed

total RNA extraction from samples taken from patients, high-throughput sequencing

and de novo genome assembly. They described the genome structure of SARS-CoV-

2.

After learning about the identity of the culprit, surveillance efforts were put into ac-

tion employing many different methods. The main targets of surveillance are mon-

itoring SARS-CoV-2 incidence and assessing the severity of Covid-19 in different

social groups, tracking changes in the incubation period, fatality rate, recovery rate,

hospitalisation and other epidemiological features, monitoring the circulating vari-

ants and detecting newly emerging variants. This information in turn guides public

health actions like contact tracing, individual isolation and imposing quarantine on a

population [16].

For detecting the existence of the virus, RT-qPCR is used with various kits targeting

various SARS-CoV-2 genes like RdRP, E, N, S and ORF1ab [17]. Also, the S gene

dropout method which takes advantage of the fact that some strains fail to respond to

S gene targeting but are detected with other genes helped identify specific strains with

certain mutations on the S gene [18]. In addition to these nucleic acid amplification

tests, different kinds of serological tests including antigen detection and antibody de-

tection tests are used [19], which can be faster and cheaper, but their specificity might

not be ideal [20]. Finally, viral sequencing can provide more information than just

detection and quantification of the virus. Partial sequencing of the genome can pro-

vide phylogeny and strain information [21] while whole genome sequencing enables

tracking the mutations and newly emerging variants [22].

Among the different available sequencing protocols, amplicon sequencing stands out

in SARS-CoV-2 studies. In whole genome amplicon sequencing, the genome of the

3



target organism is amplified in segments called amplicons (figure 1.1). Primers in a

given primer set are designed so that the amplicons overlap, which results in whole

genome coverage without gaps in between the amplicons, although genome ends are

blind spots. Multiplex PCR or similar methods like RC-PCR [23] are used to both

enrich and amplify the target segments in a single PCR step. This circumvents the

necessity to deplete non-target RNAs or separately enrich for target RNAs prior to

amplification [13]. Its targeted nature is suitable for heavily contaminated biological

samples like the nasopharyngeal swabs contaminated with host DNA and wastewater

samples containing host DNA along with other microbial and viral genomic material,

and the test results are obtained in a relatively short time [24]. Apart from the practical

advantages in wet lab procedures, in terms of the resulting data, it has been shown that

amplicon sequencing can provide higher read-depth (although not uniform) even with

low concentration input sample and with a higher percent of SARS-CoV-2-mapped

reads and lower non-target organism-mapped reads [25]. The development of many

commercially available, easily deployable kits for SARS-CoV-2 amplicon sequencing

was followed by its widespread use in SARS-CoV-2 tracking.

Figure 1.1: Tiling amplicons in whole genome amplicon sequencing.

The biological samples for testing are generally collected from individuals who show

symptoms and register at clinics. But there are also random testing and group testing

approaches where samples from a group of people are pooled and tested together,

which makes it possible to track more people with the available resources and guides

the individual testing especially in communal living areas like long-term care facilities

[26]. Wastewater became an important data source as will be elaborated on in the next

section.
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1.4 SARS-CoV-2 Wastewater Surveillance and Sequencing

Early in the pandemic, researchers tried to understand the mode and period of infec-

tion and other virological and epidemiological aspects of the virus. Studies like [27]

and [28] showed that although being a respiratory tract virus, SARS-CoV-2 was shed

in faeces and this was irrespective of being symptomatic or the severity of the ill-

ness. Moreover, it was shown that stool samples kept testing positive even after about

a week later than pharyngeal swab samples turned negative, although stool viruses

were not viable. The existence of the virus in the faeces paved the way to monitor the

virus from sewage systems, which was an exciting idea. Because wastewater data rep-

resents a population of any size from a university campus to a whole city. This made

it an ideal tracking method since it is impossible to individually sequence everyone

in a population periodically due to financial and practical constraints.

Wastewater surveillance can help with some of the aims of SARS-CoV-2 surveillance

mentioned in the previous section. Although we cannot exactly know many epidemio-

logical features solely from the wastewater surveillance data, we can estimate disease

prevalence and variant abundance change trends on a population level. By choosing

strategic sampling points, we can also infer about different social groups. Although

it provides real-time monitoring of the population in a feasible way, it has limitations

because of the uncertainties in the data stemming from fluctuations in population size

and wastewater flow over time as well as a low target/contaminant ratio [29]. In this

sense, it is complementary to clinical surveillance. When combined with information

coming from other surveillance methods wastewater surveillance can be very infor-

mative. For example in Hong Kong, they could detect a single Delta variant carrier

individual in a population of 33,000 people thanks to routine wastewater surveillance,

which then led to strategic upstream wastewater sampling upon Delta variant detec-

tion, which finally led to compulsory individual testing in a small area [30].

SARS-CoV-2 wastewater surveillance started mainly with detecting the existence of

SARS-CoV-2 with RT-qPCR, quantifying the viral load and estimating the disease

prevalence, while a small number of partial or whole genome sequencing were per-

formed to validate what RT-qPCR detects was actually SARS-CoV-2 [31, 32, 33].

They showed that viral load estimations obtained from wastewater correlate with the
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clinically reported case numbers and even preceded them, which makes wastewater

a potential early warning system [34]. These promising results showed wastewater

to be a valid data source in SARS-CoV-2 tracking and over 55 countries around the

world (including Turkey) started watching their wastewaters for SARS-CoV-2 [35].

Then it became possible to track some specific variants from wastewater with variant-

specific tests such as allele-specific RT-qPCR, and there have been case studies where

wastewater surveillance had a significant impact on public healthcare decisions as

mentioned before [30].

Later on, it was shown that whole-genome high-throughput sequencing of wastewater

holds valuable information. In early sequencing studies, it was shown that it is pos-

sible to detect individual mutations in SARS-CoV-2 genomes and infer about VOCs

and VUIs bearing those mutations, although wastewater being a mixture complicated

the interpretation [36]. Then software programs like SAM Refiner [37], and Freyja

[38] were developed which were designed to be used with wastewater sequencing

data and can ascertain individual variants within the mixture and even estimate their

relative proportions. Similar to the disease prevalence, variant abundances estimated

from wastewater were shown to be in line with the clinically reported ones, and newly

emerging variants were detected in wastewater significantly earlier than their detec-

tion in clinics [38], which is again a piece of critical information for public healthcare

decisions.

1.5 Characteristics of Wastewater-derived Data

There is a specialised set of characteristics that we observe in the majority of SARS-

CoV-2 wastewater sequencing data and ideally should also be represented in sim-

ulated data. First of all, a sample taken from wastewater contains biological matter

from multiple people. Consequently, as opposed to a clinical sample, sequencing data

coming from a single run will frequently contain information from multiple SARS-

CoV-2 variants. Furthermore, these variants may be present in different proportions.

Secondly, as mentioned previously, amplicon sequencing is the dominant method for

SARS-CoV-2 sequencing studies in general and also specifically in wastewater. As

of July 2022, out of 4,840,834 raw SARS-CoV-2 sequences listed in COVID-19 data
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portal by ENA (https://www.covid19dataportal.org), 4,692,588 of them (96.9%) are

derived from amplicon sequencing, which contributes with its characteristic features

to the data. Amplicon sequencing data typically have patchy read depth across the

genome as a result of differential binding efficiency of primers within a given primer

set [25] and possible differential amplification success of the amplicons. Moreover,

the read depth pattern mostly depends on the specific primer set in use, but a poor

sample quality often inflates the variation across amplicons [25]. The third character-

istic of the data is RNA degradation, PCR and other library preparation errors, col-

lectively referred to as high-frequency errors from now on (as opposed to sequencing

errors which are typically at low frequency). This is because viral RNA in wastewater

is exposed to all sorts of environmental factors such as heat, chemicals and physical

strains from the point it leaves the human body to sample collection, contrary to clin-

ical samples. Finally, sequencing errors are a major component of the data. The

most frequently used sequencing platform is Illumina with a paired-end library lay-

out, which comes with its unique sequencing error patterns.

1.6 Aim

Testing and benchmarking are crucial for any software and method. Although there is

truth set data for some specific bioinformatics applications, like Genome in a Bottle

for variant calling (https://www.nist.gov/programs-projects/genome-bottle), it is not

the case for many others. This may be because sometimes the truth data is impossible

to obtain (like human evolution and population genomics studies) or is not feasible be-

cause of the time and resources it requires (like creating many non-existent potential

variants of a virus). Researchers often rely on simulation for creating benchmarking

data where they can control many parameters and produce plenty of data in a short

time. In the context of SARS-CoV-2 wastewater sequencing, the software programs

that are specifically designed to be used with this type of data need benchmarking.

But as previously mentioned, the data has specific characteristics. Some existing se-

quencing simulators can account for some elements (like sequencing errors in ART

[39] and many other sequencing simulators) while some data characteristics are over-

looked altogether or not in a usable form for our data including read depth variation
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across amplicons and high-frequency errors. We aim to create a realistic and easily

usable SARS-CoV-2 wastewater sequencing simulator by exploring the overlooked

characteristics and creating a program that takes advantage of the novel knowledge

to account for the overlooked characteristics and making use of pieces of existing

software for the elements that are already thoroughly studied.

1.7 Contributions

This dissertation reports my contributions towards a simulator, namely SWAMPy

(Simulating SARS-CoV-2 Wastewater Amplicon Metagenomes in Python), that can

provide realistic simulated data of SARS-CoV-2 paired-end amplicon sequencing

data coming from wastewater and sequenced on an Illumina machine.

Analyses regarding the differential amplicon distribution were done by Will Boulton,

who also created the first prototype version of SWAMPy, which generated a realistic

read-count simulation per source genome and per amplicon among other features.

I, F. Rabia Fidan, did analyses regarding the high-frequency errors, statistically mod-

elled the findings and implemented an error introduction functionality to SWAMPy.

I also contributed with performance enhancements and release preparations, and im-

proved the documentation. My work moved SWAMPy from prototype to publicly

released software, with an accompanying paper being prepared for submission to an

international peer-reviewed journal. My contributions will be detailed in the follow-

ing chapters.

Nick Goldman and Nicola De Maio (EMBL-European Bioinformatics Institute) su-

pervised, guided and actively participated in each step of the study.

Mehmet Somel reviewed the work and contributed with valuable discussions, thanks

to which I added the clinical analyses.

Chapter 2 covers the analyses on high-frequency errors which constitutes error char-

acterisation on real sequencing experiments and statistical modelling of different as-

pects of the errors coming from wastewater and clinical samples. Chapter 3 covers the

implementation of the findings into SWAMPy together with the SWAMPy workflow
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and working principles.

9



10



CHAPTER 2

ERROR CHARACTERISATION

2.1 Introduction

As described in Chapter 1, errors that are high in frequency in the data that likely

stem from RNA degradation and library preparation errors we collectively refer to as

high-frequency errors. In this part of the study, we classified different kinds of high-

frequency errors, modelled error rates, error lengths and variant allele frequencies and

then estimated model parameters from the data. We repeated the same analysis with

clinical data to see if our assumption that wastewater data has more high-frequency

errors is supported. We compared clinical, and wastewater error characteristics which

support that high-frequency errors are indeed an important feature of wastewater data.

2.2 Methods

2.2.1 Classification

For error classification and characterisation we used real wastewater sequencing data

from 121 experiments (see Section 2.5). We mapped raw reads to the Wuhan-Hu-

1 [15] reference genome using bowtie2 [40] (version 2.4.4). We then used bcftools

mpileup [41] (version 1.13) to obtain vcf files. We did not perform a separate vari-

ant calling as we are interested in errors and needed every discrepancy between the

reference genome and our sample, which henceforth will be referred as variants. We

filtered out positions with a read depth (DP) <10 and with <5 reads supporting the

alternative allele (AD). The remaining variants are classified into different categories
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as summarised in fig. 2.1. First of all, if the variant allele frequency (VAF) of a

variant is smaller than 0.02, we classified them as sequencing errors since sequenc-

ing error rates are typically < 2% for Illumina devices [42]. Since the sequencing

errors are modelled and simulated very well with the existing simulators, we did not

model them but used an external software ART[39] for this purpose (see Chapter 3).

The remaining variants included real polymorphisms between different SARS-CoV-2

variants and high-frequency errors. Distinguishing these two groups for the whole

variant set proved challenging since there is no certain way to tell if a variant is a

SNP or a high-frequency error. For this reason, we looked at a subset of the variants,

namely, nonviable mutations: reasoning that if a variant is nonviable, it cannot be

coming from a real organism; hence, it must be a (high-frequency) error. For this

analysis, we only considered ORF1ab and S open reading frames of SARS-CoV-2

since these genes cover more than two-thirds of the genome, their function is better

understood and they do not contain a reported stop codon in them to our knowledge,

while this is not the case for other smaller open reading frames [43, 44]. We also

excluded a portion from the 3’ ends of these open reading frames due to the fact that

some supposedly nonviable variants could be tolerable there since a few less codons

from the 3’ end might not disrupt its function completely. Nonviable meant for sub-

stitutions it is a nonsense mutation and for indels, its length is not a multiple of three.

We further divided the high-frequency errors as either recurrent or unique based on if

they appear in more than one wastewater sample and only one wastewater sample re-

spectively. Then we divided both recurrent and unique errors as insertions, deletions

and substitutions.

For clinical data analyses the same workflow is applied on 300 COG-UK clinical se-

quencing data generated with matching technical properties, i.e. amplicon sequenc-

ing, Illumina sequencing platform and paired-end library layout.

2.2.2 Modelling and Parameter Estimation

We modelled error rate as genome-wide error rate per locus for different type of er-

rors. Error rates were corrected for the missing data according to error length models.
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Figure 2.1: Variant classification criteria

2.2.2.1 Error length

Error lengths are modelled as follows based on the observation from the real data (see

figure 2.2):

Figure 2.2: Histograms of indel length distributions. A) Deletions show a geometric-

like length distribution. B) Insertion lengths display a uniform distribution

• substitution: 1

• insertion: Uniform(max = L)
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• deletion: Geometric(p)

For insertions, the maximum value of the uniform distribution is the maximum ob-

served insertion length in our dataset, 14. For deletions, we use the geometric distri-

bution.

Given a deletion is initiated we model its length via:

P (termination) = p

P (extension) = 1− p

For estimating the geometric distribution parameter p we could not use a standard

distribution fitting technique because we cannot observe deletions with len = 3j for

j = 1, 2, 3... Also, longer deletions are not present in our dataset. We wanted to avoid

the bias coming from the missing observations by using only the deletions of length

one and two thanks to the equation 2.1 and equate it with the observed deletions
#length2
#length1

.

P (len = 2)

P (len = 1)
=

(1− p)p

p
= 1− p (2.1)

So, our estimator becomes:

p̂ = 1− #length2

#length1
(2.2)

2.2.2.2 Error rate

We calculated the error rates separately for all six classes of high-frequency errors

in both clinical and wastewater data. We applied corrections for the fact that we are

using a subset of the genome. Error rates are calculated as follows where NS is the

observed nonsense mutation count, ID is the observed indel count and L is the total

loci count across all experiments:

• Substitution: C NS
L
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• Indel rate: C ID
L

C values are correction factors. For substitutions, it corrects for the fact that only

the loci along the genome which are capable of creating a stop codon by a single

nucleotide change are visible to us in this analysis. I calculated the correction factor

as:

correction factor = #all possible mutations
#all possible nonsense mutations

from the reference SARS-CoV-2 genome (Wuhan-Hu-1 [15]) by changing every ref-

erence nucleotide with the other three one by one and checking if that mutation is a

nonsense mutation. I did this locus by locus, returning to the reference allele each

time before moving on to the next locus. Here we did not take into account the poten-

tial differences in the rates of different mutations (i.e. whether it is a A->T or C->T).

The correction factor value is approximately 21. For insertions, the correction factor

is simply 3/2 because of the uniform distribution and lack the deletions of length

multiples of three. Finally, for deletions, we made use of the geometric distribution

definition, and its calculation details can be seen in Appendix A

2.2.2.3 VAF

For modelling VAF of all types of errors, we used Beta distribution, and the two

parameters were estimated with the method of moments.

2.3 Results

Numerical values of the different kinds of error rates can be seen in Table 2.1a and an

extended version of this table including the error counts and correction factors can be

seen in Table A.1 in Appendix A.

In all except one error category, the wastewater error rate was higher than the clinical

error rate. In particular, unique and recurrent substitutions and unique deletions error

rates were 74, 67 and 43 times the clinical ones.
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Table 2.1: Table1: Error error rates of different categories of errors and error rate ratio

of wastewater to clinical

Ww rate (rWw) Clinical rate (rC) rWw/ rC

rec ins 0.000036 0.000029 1.251549

rec del 0 0.000008 0

rec subs 0.003357 0.00005 66.924926

u ins 0.000025 0.000003 7.904519

u del 0.000125 0.000003 42.704206

u subs 0.002485 0.000033 74.302477

(a) Ww: wastewater, u: unique, rec: recurrent, ins: insertion, del: deletion, subs: substitution

Deletion length model’s geometric distribution parameter estimation on our dataset

yielded the estimations of 0.63 for wastewater and 0.86 for clinical data.

2.4 Discussion

In each category of errors, we saw some recurrent errors, that is errors that are ob-

served in multiple independent sequencing runs. Although the biological basis of

these unique and recurrent errors is currently unknown to our knowledge, recurrent

errors might originate from the positions along the genome that are more susceptible

to degradation or to context-dependent PCR errors. In this sense, we associate recur-

rent errors more with RNA degradation and unique errors with random PCR errors.

But this question needs to be further explored in the future.

Our error rate ratios support the hypothesis that wastewater data has higher high-

frequency error rates and an ideal wastewater sequencing simulator should account

for them in addition to sequencing errors.

There are a few other error elements that can be taken into account in the future to im-

prove our error model such as PCR-mediated recombination products, also known as

PCR chimeras [45, 46]. Similarly, the context of the errors (for example a homopoly-

mer region or a structured part of the DNA) might affect PCR errors [46], which is
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not currently accounted for.

2.5 Dataset availability

Wastewater sequencing experiments were conducted by members of JBC-led Wastew-

ater Genomics collaboration and the data was internally shared with EBI and other

collaborators. 12 of the 121 samples are mixtures of synthetically produced SARS-

CoV-2 variant genomes, which mimic wastewater samples. 109 of them were sam-

pled from wastewaters in the UK.

Clinical data is clinical sequencing experiments by COGUK. ENA accessions of all

samples can be seen in Appendix A.
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CHAPTER 3

SWAMPY

3.1 Introduction

SWAMPy (Simulating SARS-CoV-2 Wastewater Amplicon Metagenomes in Python)

is a Python program designed to simulate wastewater amplicon sequencing data com-

ing from an Illumina sequencing platform.

This chapter of the thesis explains the general workflow of our simulator tool SWAMPy

and its methods with an emphasis on the specific functionalities I designed and im-

plemented. It also shows how SWAMPy-simulated data behaves in a downstream

application and mentions my other contributions to SWAMPy.

3.2 Contributions

Step 2 of the workflow described below was implemented by me. Steps 1,3 and 4

of the workflow were implemented by Will Boulton in the prototype simulator and

some of them were then later improved by me along with bug fixes, as will be ex-

plained in the following sections. Program testing was done by me with the help of

voluntary testers on multiple devices with Linux and macOS operating systems. I

added a compatible Conda environment to the program repository, listed OS-related

dependencies, prepared and added sample data to the repository, documented new

functionalities and improved the existing documentation. I also performed analyses

using a downstream application with SWAMPy-simulated data.

19



3.3 Methods

3.3.1 Step 1 - Creating Amplicons

The SWAMPy workflow starts with taking inputs which are the genomes of the

SARS-CoV-2 variants (in a multi-FASTA format) that will be present in the simu-

lated wastewater sample, their proportions in the mixture and the total target number

of sequencing reads to be simulated. The user also chooses one of the supported

primer sets in the program, which are ARTIC v1, ARTIC v4 [47] and Nimagen v2

[23].

Figure 3.1: Step 1 of SWAMPy workflow.

SWAMPy starts by aligning the primers to the source genomes and slicing them from

the primer binding positions to create amplicons of the source genomes (Figure 3.1).

Then read counts per amplicon per genome are simulated using a Dirichlet distribu-

tion to take into account the read depth variation across the amplicons of a primer set

and stochasticity across different experiments. Specific amplicon abundance profiles

of individual primer sets obtained from real experiments were used to derive the de-

fault Dirichlet parameters. Relative variant abundance input by the user is also taken

into account. For the details of the read count simulation, see Boulton & Fidan et al.

(2022) (in preparation). At the end of step 1, we have amplicons of the source variant

genomes, and the number of sequencing reads that we want to simulate from each.
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3.3.2 Step 2 - High-frequency errors

After obtaining the initial amplicon population at step 1, SWAMPy diversifies it with

mutant versions of the amplicons (Figure 3.2). This includes simulating individual

errors, creating combinations of errors within individual amplicons to create different

versions, and then distributing the read count of the wild-type amplicon between all

versions (wild-type and mutant).

The natural way to simulate PCR errors is to simulate the inheritance of the errors

from the previous PCR cycle and the addition of the new errors at each replication

step. But simulating an error tree for each error would be computationally too ex-

pensive and would be infeasible in terms of run times. Also, we would lose some

degree of control over the VAF of the individual errors. Instead, we opted for a more

feasible and good enough approach where we simulated the errors individually and

then grouped them randomly (keeping the control over their individual variant allele

frequencies).

Figure 3.2: Step 2 of SWAMPy workflow.
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3.3.2.1 Simulating individual errors

We use the error models and estimated parameters from Chapter 2 at this stage. We

create a table like that shown in Table 3.1 that contains all targeted errors to introduce:

1. The number of each type of error to be introduced is sampled from Poisson(L×
R) where L is the length of the Wuhan reference genome Wuhan-Hu-1 [15]

and R is the error rate. Error rates are user-definable for each of the six types

of error, with default values estimated from real wastewater experiments as

described in Chapter 2 (See table 2.1a).

2. A genome position for each error is sampled randomly without replacement

from Wuhan-Hu-1. For unique errors, one of the source genomes is randomly

assigned with sampling weights equal to the genome abundances in the mixture.

Moreover, if more than one amplicon spans the previously determined error

position, a unique error is assigned to only one of them.

3. An error length is assigned to each error. The error length is always 1 for

substitutions while it is sampled from a geometric distribution, Geometric(p),

for deletions. p is the probability parameter of the geometric distribution and

higher p will result in shorter deletions. For insertions, it is sampled from

Uniform(max) where max is the maximum insertion length. Error length pa-

rameters p and max can be defined by the user, with their default values obtained

from real data (see Chapter 2).

4. An alternative allele is created for each error. For substitutions, this is a random

single nucleotide that is different from the reference genome, and for insertions,

it is a sequence of randomly sampled nucleotides of the previously determined

error length.

5. A variant allele frequency (VAF) is sampled for each error from a Beta dis-

tribution as (VAF, 1−VAF) ∼ Beta(α, β) (see Chapter 2). Similarly, Beta pa-

rameters are user-definable separately for unique and recurrent substitutions,

insertions and deletions. Assigned VAF values are the expected VAF of the re-

current errors in the final mixture, while for unique errors, the expected value of

the VAF in the final mixture will be (assigned VAF) × (amplicon abundance)
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Table 3.1: Examples of High-frequency Errors

type rec/u genome len pos ref alt VAF amp

subs rec g1,g2,g3 1 20,000 A T 0.1 70,71

subs u g2 1 530 T G 0.2 3

ins rec g1,g2,g3 7 245 A AGCG 0.9 2

del u g3 3 230 AGCT A 0.6 2

...

(a) Abbreviations: rec: recurrent, u: unique, subs: substitution, del: deletion, ins: insertion, amp:

amplicon number, len: length, alt: alternative allele, pos: genomic position, gX: SARS-CoV-2 variant

genome identifier

3.3.2.2 Creating mutant versions

After we compile the table that contains all simulated errors, one by one, we pro-

cess all amplicons in the amplicon population that we previously created. For each

amplicon:

1. Errors that correspond to this amplicon are selected from the error table.

2. Because simulated error positions are based on the Wuhan-Hu-1 reference and

a variant amplicon in a wastewater sample may contain indels, the amplicon

sequences are aligned to Wuhan-Hu-1 using Bowtie 2 [40].

3. Positions of each error in the amplicon relative to the amplicon start are deter-

mined taking into account indels that the variant may have and genomic posi-

tion of the errors.

4. The number of reads in which each individual error will be present in the mix-

ture is determined by sampling a read count ne for each error from Binomial(N,

VAF) where N is the read count of the amplicon and VAF is the variant allele

frequency of the error. At this stage, the sum of error read counts can be larger
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than the total read count of the amplicon because some reads will contain mul-

tiple errors.

5. Different mutant versions i of this amplicon bearing different error combina-

tions, and their read count ni is determined. To determine the ni, all errors

are allowed to separately and randomly sample ne reads from the reads of the

amplicon. The result of this sampling is grouped first by the reads (because the

same read might be sampled by multiple errors), and then different combina-

tions of errors to finally obtain a read count for each combination. Then the

read count of the wild-type amplicon is N −
∑p

i=1 ni where N is the total read

count of that amplicon and ni are the read counts of the mutant versions where

there are p mutant versions of the amplicon.

6. Finally, the amplicon sequence is modified with the corresponding sets of errors

to create mutant versions.

3.3.3 Step 3 - Creating sequencing reads

Now that the diversified amplicon population is known, the next step is to create se-

quencing reads (Figure 3.3). At this stage, we need to add sequencing errors and base

quality simulation to the data. This is sequencing platform-dependent and is thor-

oughly studied by other researchers. Existing tools are good at performing this task,

and hence we used an external tool within the SWAMPy workflow at this step. We use

ART [39] in amplicon mode to create paired-end sequencing reads from each ampli-

con. We also suppressed creating alignment files (because ART produces alignment

files as default, but SWAMPy only needs FASTQ files) with "noALN" flag and also

used "maskN" flag to faithfully transcribe the N characters appearing in the source

genome files. Other ART options such as read length (default:150), sequencing ma-

chine type (default:MiSeq V3), total read count (default:100K) and random seed can

all be taken as inputs by SWAMPy and passed to ART. At the end of step 3, we have

a pool of forward and reverse FASTQ files created by ART.
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Figure 3.3: Step 3 of SWAMPy workflow.

3.3.4 Step 4 - Merging and shuffling

At this last step (Figure 3.4), the program merges and shuffles all the forward and the

reverse reads separately to create a single forward and a single reverse FASTQ file to

avoid potential biases in case a downstream application software uses reads with the

order in the file.

Figure 3.4: Step 4 of SWAMPy workflow.
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3.3.5 Downstream application

We wanted to see if SWAMPy can be potentially useful in scenarios where we are

testing a demixing method over a realistic series of samples. For that, I wanted to

test the program called Freyja [38] which can demix a mixed wastewater sample into

individual variants and estimate their relative abundances. I used SWAMPy to sim-

ulate 73 time points throughout the course of a hypothetical SARS-CoV-2 pandemic

where the Alpha variant (B.1.1.7) starts out dominant before Delta (AY.4) rises in fre-

quency and then Omicron (BA.1.1) emerges and takes over. The exact abundances at

each time point can be seen in Appendix B. Then I used Frejya to demix the simulated

samples and estimate variant abundances. I then compared simulation abundaces with

Frejya estimations.

3.4 Results

3.4.1 SWAMPy

The source code of our python implementation of SWAMPy, together with the pro-

gram documentation and example files is available under the GPL-v3 license at:

https://github.com/goldman-gp-ebi/sars-cov-2-metagenomic-simulator.

SWAMPy takes as input a multi-FASTA file (figure 3.5) containing the SARS-CoV-2

variant genomes that will be present in the simulated wastewater sample, as well as

a file that contains the relative abundances of these variants in the mixture as input

(figure 3.6). For ease of use, other input files (primer set BED, FASTQ, and primer set

specific amplicon distribution files) were wrapped with a single "–primer-set" param-

eter which loads the corresponding input files of the chosen primer set. As of August

2022, there are three supported primer sets: ARTIC V1, ARTIC V4 [47] and Nima-

gen V2 [23]. There are many command line parameters that allow fine control of the

program such as the parameter c that reflects the quality of the wastewater sample, the

total number of simulated reads, and error rates, VAF and lengths of high-frequency

errors. The full list of command line interface arguments and their explanations are

available on the GitHub wiki page "CLI-arguments".

26



Figure 3.5: Example genomes multi-fasta file showing the variants from the section

3.3.5. (The first 2 variants are randomly shortened, and the last variant is truncated)

Figure 3.6: Example abundances file showing the 53rd time point from section 3.3.5

SWAMPy produces five output files as default:

• A forward and a reverse FASTQ file of the simulated reads, matching Illumina

standards

• A table that shows the abundance of each wild-type amplicon after the random-

ness in amplicon copy number sampling (as described in 3.2) took effect

• A VCF file that contains all the targeted high-frequency errors from the error

table described in Chapter 2.

• A log file

As an example, it is visible in the alignment images of 53rd time point of pandemic

simulation output that the major characteristics of wastewater data are present in the

simulated data. Overlapping amplicon structure and the variation in coverage across
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Figure 3.7: IGV images of SWAMPy simulated reads. The gray track at the top

shows the coverage. Pink and blue chunks are forward and reverse reads respectively.

Paired-end overlapping forward and reverse reads make up one amplicon. Amplicons

overlap not to leave gaps.

the genome is visible in figure 3.7. SNPs between the variants in the mixture is also

visible in the data. Figure 3.8A shows a C->T SNP at 7124th position on the Delta

variant but not present in the Alpha and the Omicron variants. In figure 3.8B Sequenc-

ing errors added by ART [39] are visible in high density towards the read ends as a

trademark of the Illumina machines. Figure 3.8C shows the unique high-frequency

errors which are characterised by their presence in only one of the source genomes in

the mixture and not crossing the amplicon boundary if it falls on an amplicon overlap

region. Figure 3.8D shows the recurrent high-frequency errors that are characterised

by their presence in all source genomes and both amplicons of an overlap region. Fi-

nally, the source genome of a read can be seen in IGV (figure 3.9) as well as in FASTQ

files, which of course is not possible in real wastewater sequencing experiments.

3.4.2 Downstream application

Results suggest that SWAMPy can be useful in testing the methods of downstream

applications. We saw that Freyja is quite successful in demixing the simulated data

overall and finds all major features, though it sometimes finds in relatively high fre-

quencies variants that are not present in the simulated mixture (Figure 3.10). This

stems from misclassification of some variants as others probably because of some

28



Figure 3.8: IGV images of SWAMPy simulated reads. A) A real SNP between differ-

ent SARS-CoV-2 variants. B) Sequencing errors added by ART. This image is from

a read end where the sequencing error density is higher. C) A unique high-frequency

error on an amplicon overlap region. It is seen that only one of the amplicons carries

the error. D) Recurrent high-frequency error on an amplicon overlap region. Both

amplicons carry the error.

Figure 3.9: Information regarding the source genome of a particular read can be re-

trieved from the SWAMPy output.

high-frequency errors in the simulated data. This feature of Freyja can be further in-

vestigated by comparing Freja identifications with actual individual mutations in the

simulated data.

3.5 Discussion

SWAMPy is an easy-to-use and reasonably fast wastewater SARS-CoV-2 simulator

that takes into account the major characteristics of this type of data like a mixture

of different variants in different proportions, differential amplicon abundance pattern

of different primer sets and PCR and RNA degradation errors at high frequencies.
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Figure 3.10: Progression of a simulated pandemic with 73 time points and Freyja

estimations. Background colours represent the values given as input to SWAMPy

simulations and lines represent the Freyja estimations.

SWAMPy fills a niche that other simulators do not and enables researchers working

on wastewater SARS-CoV-2 studies to test and benchmark their methods.

In the future, SWAMPy can be improved by taking into account the following con-

siderations:

In real data, it is expected that different mutant versions of the amplicons can be

placed on a tree and error combinations are not random. However, since constructing

a tree for each amplicon would be computationally too expensive, we took a more

simplistic approach where we determined the error combinations randomly respecting

the summary statistics such as VAF.

We assign an alternative allele to an error with respect to the Wuhan-Hu-1 reference

instead of the variant genome present because otherwise, it would not be possible

to create recurrent errors. But this means a small proportion of the errors will not

show as a variant in the simulated data if the SARS-CoV-2 variant happens to share

the same variation naturally. But this will occur only rarely on a proportion of all

simulated errors, so it should not be a serious problem. Similarly, when an error is
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unique, it is constrained in only one of the variant genomes in the mixture, which

systematically understates the VAF of unique errors in the overall mixture. Research

on the biological origins and mechanisms of the recurrent and unique errors can help

us create better error models, which in turn can solve these problems.

Moreover, during amplicon creation in Step 1, we use default Bowtie 2 settings which

can be too stringent and cause an amplicon to drop out when there is a variant in the

primer binding site while in reality there might be some flexibility. In the future,

primer binding conditions can be relaxed to allow some errors.

Finally, we want to add more primer set support to the program in the future.

3.6 Other improvements

I made many modifications to the program as well as bug fixes. Some important ones

are as follows:

• I improved the performance in Step 3 by merging the runs of art_illumina of

ART program. This decreased the number of times we had to invoke the pro-

gram and saved a good amount of time on initializing and exiting the program.

Table 3.2 shows the run times before and after the enhancement.

• I modified the way that internal temporary files are handled. This helped fix a

bug that is caused by the special characters in variant genome names by creating

an internal escaped version of the file. More importantly, tidying up temporary

file handling enabled simultaneous executions of SWAMPy without interfer-

ence from one run to another as long as they have unique "–temp_folder" pa-

rameters. This enabled using SWAMPy in workflows such as a Snakemake

rule, or when submitting simultaneous LSF or SLURM jobs.

• I modified the command line arguments for ease of use, including for example

wrapping three dependent and confusing arguments with a single and easy "–

primer_set" argument.

• I prepared example input files from publicly available data. This enabled users

to have a ready-to-run example case.
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• I tested the program on multiple MAC and Linux devices. This enabled me

to work out some conflicts caused by non-compatible versions of the depen-

dency programs as well as OS-related dependencies. This information enabled

me to prepare a compatible Conda environment and guide the user about the

dependencies, which increased reproduciblity greatly.

• I improved documentation, organized already existing content in wiki pages

and added missing content.

Table 3.2: Run times. The first row is before the enhancement. Other rows are after

the enhancement. Columns show the number of genomes in the simulation mixture,

hi-frequency error rates and run times of step 2 and step 3 of the workflow as well as

the total run time. The decrease of step 3 run times is prominent after the enhancement

#genomes error rate Step 2 Step 3 total

15 default 2.5m 8m 11m

15 default 2m 0.5m 3m

3 default 0.5m 0.5m 1m 40s

3 subs x10 50s 0.5m 1.5m

3 subs x 100 5m 10s 6.5m

3.7
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APPENDIX A

CHAPTER 2 APPENDICES

A.1 Deletion rate correction

Since we modelled deletions with geometric distribution, we correct for the lack of

multiples of three as follows: First we show the sum of the geometric distribution

probabilities equals to 1 in equation A.1. We find the missing part by summing the

probabilities of multiples of three (equation A.2). We subtract this from one, which

is the the proportion of the data visible to us. We take reciprocal of this value, which

is the correction factor (equation A.3).

∞∑
i=1

p(1− p)i−1 = p(1 + (1− p) + (1− p)2 + ...) = p
1

1− (1− p)
= 1 (A.1)

∞∑
i=1

p(1− p)3i−1 = p(1− p)2
∞∑
i=1

(1− p)3i−3

= p(1− p)2
∞∑
i=1

((1− p)3)
i−1

=
p(1− p)2

1− (1− p)3

(A.2)

1

1− p(1−p)2

1−(1−p)3

=
p2 − 3p+ 3

2− p
(A.3)
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Table A.1: Extended Table1: Error counts, correction factors and error rates of dif-

ferent category of errors.

Ww Ww ratio Clinical Clinical ratio Ww C clinical C Ww rate (rWw) Clinical rate (rC) rWw/ rC

rec ins 19 0,00002391688003 120 0,00001910982608 1,5 1,5 0,00003587532005 0,00002866473912 1,251548807

rec del 0 0 47 0,000007484681882 1,09 1,02 0 0,00000763437552 0

rec subs 127 0,0001598654613 15 0,00000238872826 21 21 0,003357174686 0,00005016329346 66,92492567

u ins 13 0,00001636418107 13 0,000002070231159 1,5 1,5 0,00002454627161 0,000003105346738 7,90451878

u del 91 0,0001145492675 18 0,000002866473912 1,09 1,02 0,0001248587016 0,00000292380339 42,70420576

u subs 94 0,000118325617 10 0,000001592485507 21 21 0,002484837957 0,00003344219564 74,30247653

A.2 Extended table: Error rates

A.3 Clinical data accessions

ERR8168754, ERR8170495, ERR8171952, ERR8172380, ERR8172664, ERR8173717,

ERR8174217, ERR8174267, ERR8175020, ERR8177835, ERR8178034, ERR8178181,

ERR8178260, ERR8178462, ERR8178707, ERR8179489, ERR8179838, ERR8179914,

ERR8180400, ERR8180978, ERR8181059, ERR8181416, ERR8181818, ERR8182040,

ERR8182190, ERR8182225, ERR8182466, ERR8182735, ERR8182804, ERR8183137,

ERR8183172, ERR8183270, ERR8183459, ERR8183652, ERR8183684, ERR8183812,

ERR8184057, ERR8184081, ERR8184103, ERR8184602, ERR8184624, ERR8184731,

ERR8184801, ERR8184998, ERR8185096, ERR8185446, ERR8185448, ERR8185564,

ERR8185572, ERR8185744, ERR8186224, ERR8186514, ERR8186625, ERR8186725,

ERR8186996, ERR8187280, ERR8187434, ERR8187455, ERR8187774, ERR8187822,

ERR8188724, ERR8188829, ERR8189531, ERR8189532, ERR8190510, ERR8190901,

ERR8191040, ERR8193067, ERR8193281, ERR8193536, ERR8193795, ERR8193923,

ERR8193959, ERR8193968, ERR8193977, ERR8193984, ERR8194147, ERR8194370,

ERR8194382, ERR8194567, ERR8194577, ERR8194684, ERR8195947, ERR8196499,

ERR8197775, ERR8198192, ERR8198441, ERR8198449, ERR8199245, ERR8199491,

ERR8200597, ERR8201792, ERR8201869, ERR8201913, ERR8201954, ERR8202329,

ERR8202440, ERR8202843, ERR8203330, ERR8203435, ERR8203451, ERR8203571,

ERR8204099, ERR8204175, ERR8204507, ERR8204545, ERR8205435, ERR8205710,

ERR8206053, ERR8206510, ERR8206707, ERR8207215, ERR8207662, ERR8207724,

ERR8207873, ERR8208169, ERR8208303, ERR8208378, ERR8208649, ERR8208675,

ERR8209565, ERR8209600, ERR8210045, ERR8210056, ERR8210151, ERR8210181,
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ERR8210259, ERR8210422, ERR8210844, ERR8210936, ERR8211527, ERR8211720,

ERR8211810, ERR8212822, ERR8213127, ERR8213366, ERR8213419, ERR8213936,

ERR8214041, ERR8215136, ERR8215343, ERR8215408, ERR8215643, ERR8215683,

ERR8215816, ERR8216059, ERR8216454, ERR8216840, ERR8216993, ERR8217589,

ERR8218906, ERR8218933, ERR8219172, ERR8219433, ERR8219792, ERR8220069,

ERR8220265, ERR8220616, ERR8220911, ERR8220984, ERR8221552, ERR8221765,

ERR8222149, ERR8222237, ERR8222493, ERR8222665, ERR8222871, ERR8222975,

ERR8223010, ERR8223065, ERR8223069, ERR8223174, ERR8223290, ERR8223468,

ERR8223562, ERR8223942, ERR8224674, ERR8225068, ERR8225193, ERR8225379,

ERR8225573, ERR8225709, ERR8226180, ERR8226467, ERR8226555, ERR8227407,

ERR8227770, ERR8227844, ERR8228313, ERR8228534, ERR8229153, ERR8229287,

ERR8229981, ERR8230047, ERR8230164, ERR8230240, ERR8230291, ERR8230393,

ERR8230483, ERR8230752, ERR8230768, ERR8230998, ERR8231358, ERR8232003,

ERR8232116, ERR8232197, ERR8232215, ERR8232376, ERR8233661, ERR8233872,

ERR8233986, ERR8234411, ERR8234498, ERR8234577, ERR8234609, ERR8235269,

ERR8235949, ERR8235960, ERR8236055, ERR8236339, ERR8236360, ERR8236491,

ERR8236679, ERR8236838, ERR8236923, ERR8237113, ERR8237256, ERR8238442,

ERR8238541, ERR8238570, ERR8238808, ERR8239173, ERR8239265, ERR8239309,

ERR8239632, ERR8239679, ERR8239697, ERR8240076, ERR8240203, ERR8240204,

ERR8240247, ERR8240629, ERR8240808, ERR8241013, ERR8241052, ERR8241592,

ERR8241933, ERR8242242, ERR8242827, ERR8242973, ERR8243271, ERR8243426,

ERR8243615, ERR8244023, ERR8244969, ERR8245425, ERR8245438, ERR8245447,

ERR8245642, ERR8246607, ERR8246772, ERR8246838, ERR8246969, ERR8247014,

ERR8247358, ERR8247908, ERR8248045, ERR8248194, ERR8248643, ERR8248758,

ERR8248999, ERR8249202, ERR8249280, ERR8250040, ERR8250430, ERR8250520,

ERR8250728, ERR8250768, ERR8250895, ERR8250908, ERR8251378, ERR8251689,

ERR8251848, ERR8251993, ERR8253002, ERR8253265, ERR8253458, ERR8254626,

ERR8254962, ERR8255106, ERR8256094, ERR8256624, ERR8256915, ERR8257351,

ERR8257601, ERR8258828, ERR8258939, ERR8259013, ERR8259912, ERR8261840
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APPENDIX B

CHAPTER 3 APPENDICES

B.1 Pandemic simulation table
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Table B.1: Simulated genome proportions

time f(Alpha) f(Delta) f(Omicron) time f(Alpha) f(Delta) f(Omicron)

0 1000 0 0 37 617 357 26

1 990 10 0 38 574 391 35

2 989 11 0 39 526 426 47

3 988 12 0 40 474 464 63

4 986 14 0 41 420 497 83

5 985 15 0 42 370 521 109

6 983 17 0 43 324 535 141

7 982 18 0 44 280 538 182

8 980 20 0 45 239 530 231

9 978 22 0 46 201 511 288

10 975 25 0 47 166 481 353

11 973 27 0 48 134 441 425

12 970 30 0 49 106 395 499

13 967 33 0 50 82 344 574

14 963 37 0 51 62 293 645

15 959 41 0 52 46 244 710

16 955 45 0 53 34 198 768

17 950 50 0 54 24 159 817

18 945 55 0 55 17 125 858

19 939 61 0 56 12 97 891

20 933 67 0 57 8 75 917

21 926 74 0 58 6 57 937

22 918 82 0 59 4 44 952

23 909 90 0 60 3 33 964

24 900 100 1 61 2 25 973

25 889 110 1 62 1 19 980

26 877 122 1 63 1 14 985

27 864 135 1 64 1 10 989

28 849 149 2 65 0 8 992

29 833 164 2 66 0 6 994

30 815 181 3 67 0 4 995

31 795 200 4 68 0 3 997

32 773 221 6 69 0 2 998

33 748 244 8 70 0 2 998

34 721 269 11 71 0 1 999

35 690 296 15 72 0 0 1000

36 655 325 20
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